€EUR

블로그
DHL Supply Chain to Deploy 5,000 Locus Origin Robots Across Multiple SitesDHL Supply Chain to Deploy 5,000 Locus Origin Robots Across Multiple Sites">

DHL Supply Chain to Deploy 5,000 Locus Origin Robots Across Multiple Sites

Alexandra Blake
by 
Alexandra Blake
12 minutes read
물류 트렌드
11월 2025년 1월 17일

Recommendation: roll out locusone automation throughout key facilities in asia-pacific to raise 품질 그리고 productivity under the demanding norms of the industry, using 원격 monitoring and integrated systems that connect control towers, warehouses, and transport hubs to sustain performance against expectations.

In asia-pacific, the model relies on scalable hardware and software that can be scaled as needed, with locusone automation pulling data from the operational источник to inform decisions. The approach yields tangible gains in productivity and reduces cycle times, while ensuring 품질 그리고 flexibility throughout locations.

Such a framework supports the stringent expectations of the industry by enabling 원격 diagnostics, predictive maintenance, and integrated systems that keep expectations on target. The team has been maximizing throughput by combining machine-driven actions with human oversight, producing consistent results and reducing waste.

The initiative also stresses flexibility to adapt to demand fluctuations in the asia-pacific market, allowing the network to respond without sacrificing quality. This is achieved through training modules, standard operating procedures, and a common systems architecture that ties together planning, execution, and data governance.

The takeaway for decision-makers is that such a framework can scale while maintaining flexibility and ensuring 품질 within asia-pacific operations, supported by data systems 그리고 원격 monitoring that keep expectations 확인 중.

Deployment framework and operational impact

Recommendation: start with a phased, integrated rollout in core facilities located in three regions, using a common data fabric and standardized interfaces to meet demand while controlling costs.

  • Framework and governance: establish an integrated control layer led by a central program office that represents regional operations, IT, and facilities. Define a single data model, standardized APIs, and risk controls to keep processing and fulfilment flows aligned with customer needs, while enabling rapid issue resolution.
  • Capacity and demand alignment: implement dynamic scheduling that links order patterns to capacity planning, ensuring peaks are absorbed without impacting service levels. Track recent demand signals and shortfalls to adjust staffing and automation as needed.
  • Phased expansion plan: design a scalable path that expands from high-demand locations to additional facilities, with clear milestones and a cadence for technology updates, performance reviews, and supplier alignment.
  • Costs and flexibility: quantify capex vs. opex implications for each phase, emphasizing total costs of ownership and the value of flexibility to reallocate capacity as needed when shortages or demand swings occur.
  • Technology stack integration: deploy an open, modular suite that integrates with existing processing facilities, warehouse management, and order management systems, reducing time to value and enabling rapid adaptation to changing industry practices.
  • People, commitment, and training: embed a formal commitment to upskilling staff, with staged training that accelerates adoption and preserves safety and quality across locations. Treat training as a part of the core program rather than an afterthought.
  • Operational impact and performance: expect notable improvements in fulfilment speed, order accuracy, and picked item throughput; aim for around a 20–30% uplift in key processing metrics while maintaining or reducing headcount. Monitor shortages risk and adjust inventory buffers to stabilize supply for customer orders.
  • Risk and resilience: create fallback plans for recent disruptions in supply chains, including diversified supplier options and buffer stock where feasible, to prevent service gaps and preserve customer trust.
  • Measurement and governance cadence: implement a tight scorecard with metrics on order cycle time, fill rate, picked rate, and defect rates, with monthly reviews to drive continuous improvement and alignment with industry benchmarks.

Phased rollout timeline and milestones

Recommendation: Initiate a two-location inception in Q1 to validate amrs integration with the warehouse management system and order routing, using a working baseline to measure demand driven efficiency gains. Set milestone 1 to achieve a good uplift through throughput and a meaningful cut in walking distance within 30 days of go-live. Leverage learning here to accelerate future expansions, enabling further scalability in key markets and ahead of peak demand. This modern, right-sized rollout keeps operations safe and continues to deliver significant ROI.

Phase 1: Discovery and integration (Q1–Q2). Milestone 2: confirm WMS connections, calibrate amrs lanes, and validate safety interlocks; prove data integrity for task planning. Target a 15–20% uplift in throughput for high-volume SKUs and a 20–25% reduction in walking distance. Develop standard operating procedures and a workforce training plan to reduce friction and ensure working alignment across shifts. Confirm vendor support and set a maintenance cadence to achieve 99.5% uptime by week 4. This step reinforces the industry shift toward digitalization and sets a solid foundation here.

Phase 2: Expansion to 6 locations by end of Q3. Milestones: achieve 95% AMR uptime in primary lanes, reduce travel time by 25%, and normalize energy use across fleets. Implement a standardized rollout package, including firmware update cadence, route templates, and fault-diagnostic dashboards. Train staff for a modern, safe interaction with amrs, and integrate with labor management to optimize staffing during shortages and peak periods. The result is improved efficiency and better demand responsiveness within this network of facilities.

Phase 3: Broad rollout to additional facilities in year 2, achieving network wide saturation. Milestones: complete standardization package across all amrs; reach 50% higher throughput in dense zones; establish real-time dashboards for monitoring, predictive maintenance, and dynamic task reallocation. Prepare for market fluctuations and shortages by enabling flexible staffing and replenishment planning; use digitalization to keep performance aligned with growth plans and customer demand here.

KPIs and governance: track AMR uptime, picking accuracy, cycle time, energy intensity, maintenance cost per hour, and operator training completion. Schedule quarterly reviews with a cross-functional steering group; use a digital twin to validate layout changes; ensure safety and compliance; coordinate with supplier roadmaps to avoid obsolescence. Set targets by market segment to reflect different demand patterns and avoid shortages in supply constrained markets.

Conclusion: Following this phased timeline positions the organization to continue improving efficiency, scalability, and resilience, while addressing the complex requirements of the industry. By staying ahead through digitalization and leveraging amrs, the network can sustain good service levels through shortages and demand spikes here.

Site readiness criteria and equipment requirements

Conduct a two-week site readiness audit and lock in electrical capacity, data connectivity, and space prerequisites before any integration. Assign operators and a facilities liaison to own measurements, risk notes, and a milestone calendar that maps where the next steps happen. For california facilities, prioritize robust power redundancy and secure network paths to support an innovative, multi-module solution.

Space planning must allow a buffer around automated work areas: at least 2 m of clearance on all sides, 3 m wide aisles for locusbots to pass safely, and a dedicated inbound and outbound zone adjacent to the loading dock. Ensure floor flatness and markings support manual handling and automated movements, while keeping environments clean and free of trip hazards.

Electrical and data backbone: provide a 3-phase supply with 400/480 V at 60 Hz, dedicated feeders for each workstation cell, transformer protection, and UPS support for critical subsystems. Data should run on fiber with minimum 1 Gbps throughput, with latency under 20 ms, plus enterprise-grade Wi‑Fi coverage with roaming. Place edge compute and diagnostic devices within 10 m of locusbots to enable remote monitoring.

Safety and compliance: implement physical separation between pedestrian routes and automation zones, install emergency stops and interlocks, apply floor markings and locking rails near charging stations, and conduct a formal risk assessment. Establish PPE requirements and a clear lockout/tagout procedure, plus monthly safety drills documented in a workplace safety plan.

Equipment readiness and maintenance: specify two charging docks per automated module, spare parts including sensor kits, bearings, and power adapters, and a contingency stock to support a 6-week maintenance window without impacting throughput. Enable remote diagnostics and software updates during off-peak hours; contract with a service partner to deliver guaranteed response times and a proactive replacement cycle. Budget for a multi-million investment to cover both hardware and ongoing support. This creates a winning operational profile with steady uptime and predictable costs.

People, training, and process alignment: sally leads onboarding for operators and warehouse staff, aligning processes with the offerings of an innovative automation solution. Create standard operating procedures for throughput, fault handling, and escalation, and schedule hands-on practice in a controlled environment that mirrors real-world warehousing environments. Build a talent plan that supports growth and a future-ready workplace, including remote assistance options and cross-training to reduce risk.

Phased rollout and scaling: begin with a pilot in a single location in california, then expanding the advanced configuration into additional markets as demand grows. Define a growth plan with milestone metrics, where future capacity aligns with market demand and customer expectations. Track performance against cost-per-pick, cycle time, and remote uptime, and adjust the footprint to remain ahead of competitive pressure while preserving safety and quality. This approach aligns with a robust logistics strategy and supports long-term market leadership.

System integration: WMS, ERP, and APIs for robotics-enabled workflows

Capitalize on a unified integration layer that links WMS and ERP with the robotics platform through RESTful endpoints and event streams. Use a single, cutting-edge API gateway and a canonical data model to align items, orders, shipments, and tasks, reducing translation drift and enabling real-time orchestration that improve operational reliability. This approach is helping deliver tremendous flexibility, expanding operations throughout the worlds of e-commerce and retail fulfillment, and delivering value-added service to the customer with a strong emphasis on performance. Only a centralized model can deliver sustained gains.

Data model and translation: Define a canonical representation for entities such as item_id, batch, location_id, order_id, task_id, carrier_id, ETA, and status. Use an integration bus or iPaaS to translate, route, and persist events between WMS, ERP, and the robotics API layer. Include versioning, backwards compatibility, and schema evolution to minimise downtime. Consolidate data mapping rules to a single source of truth, enabling more predictable automation.

Security and governance: Implement OAuth 2.0, OpenID Connect, and mutual TLS; enforce least privilege and role-based access; enable audit trails; apply masking as needed. Use CI/CD and test sandboxes for integration changes to avoid production risk.

Operational efficiency and workforce: Consolidate data flows and workflows to reduce manual work; heavily automate repetitive tasks while maintaining operational discipline; this creates a more efficient workplace and frees the workforce to focus on exception handling and value-added work that improves customer outcomes. Thrilled teams see higher satisfaction and faster response times.

분석 및 인텔리전스: 사이클 시간, 피킹률, 재고 정확도, 정시 배송과 같은 지표를 추적합니다. 대시보드를 사용하여 추세를 모니터링하고, 인텔리전스를 통해 고객 기대를 뛰어넘고 운송 및 이행을 최적화할 수 있습니다. 이를 통해 새로운 지역으로 확장하고 엄청난 부가가치 인사이트를 얻을 수 있습니다. 이러한 역량을 활용하여 지속적인 개선을 유지하십시오.

인력 전환: 교육, 재배치 및 안전

제안: 작업 과제를 amr(로커스봇)과 연결하는 로커스원 중심의 재교육 및 재배치 프레임워크를 채택하여 네트워크가 처리량과 안전성을 최적화할 수 있도록 합니다. 이러한 전환은 시장의 역량을 확대하고 캘리포니아를 포함한 지역 및 파트너 시설에서 근로자들이 업계 내 중요한 역할을 수행할 수 있도록 합니다.

어디서부터 시작할까요: 각 업무 가족을 작업자들이 더 만족스러운 업무를 수행하도록 안내하는 디지털 워크플로우에 매핑하고, 명명된 역할은 운영 리듬 내에 배치되어 기술 지원을 받아야 합니다. 디지털화가 확장됨에 따라 확장되는 단계별 계획을 수립하여 높은 안전 기준을 유지하면서 시장 점유율을 확보해야 합니다.

훈련 계획: AR/VR 시뮬레이션, 실습, 동료 코칭을 활용하여 기준 시간과 지속적인 업데이트를 갖춘 모듈식 콘텐츠를 제공합니다. 실시간 성과 데이터를 활용하여 프로그램을 조정하고, amrs 트래픽 패턴 및 로커스봇 작업과 일치시킵니다. 내부 부서와 협력하여 기술 격차를 해소하고 내부 이동성을 가속화하여 네트워크 일부에서 외부 채용을 줄입니다.

재배치 전략: 이행 및 네트워크 최적화 작업에 인력을 재할당하고, 이정표를 조율하는 명명된 교차 기능 팀을 통해 경력 경로를 유지합니다. 적합한 지원자를 유치하기 위해 성과 신호, 안전 기록 및 채용 공고의 언어를 포함하여 이동성에 대한 투명한 기준을 만듭니다. 이 단계는 이직률을 줄이고 중요한 인재를 유지하는 데 도움이 되며 원활한 전환을 보장하기 위해 파트너 기능에서 명확한 거버넌스를 제공합니다.

안전: 공식적인 위험 평가, 표준 운영 절차, 잠금/태그아웃 절차, 인체 공학적 지원, 사고 및 아차 사고 보고, 이상 징후 감지를 위한 로커스봇의 실시간 원격 측정 시스템을 구현합니다. 관리자를 교육하여 절차를 시행하고 이탈에 신속하게 대응하도록 합니다. 안전 프로그램은 특히 캘리포니아 및 기타 시장 지역의 과부하된 물류 센터에서 작업자의 웰빙과 운영 연속성을 유지하는 데 중요한 역할을 합니다.

지역 Action Timeline Owner
Training 모듈형 커리큘럼, AR/VR 시뮬레이션, 실습 위주 실험, 안전 모듈 0–3개월 기준선; 지속적인 분기별 업데이트 학습 및 운영팀
재배치 직무 매핑, 경력 경로, 부서 간 이동 3–6 months 인사/운영 리더십
Safety & Compliance 위험 평가, SOP, 아차 사고 추적, 텔레메트리 검토 분기별 감사가 진행 중입니다. 안전 사무실
기술 및 데이터 텔레메트리 거버넌스, 접근 제어, 대시보드 출시 후 지속적 IT 및 디지털화 파트너

출처: markus, 캘리포니아

KPI, 비용 모델링, ROI 시나리오

KPI, 비용 모델링, ROI 시나리오

확장 전에 유닛 경제성을 입증하기 위해 캘리포니아 센터에서 자율 로봇을 사용하여 12주간의 시범 운영을 시작합니다. Faulk Analytics를 사용하여 처리량, 정확성 및 노동 대체에 대한 목표를 설정하고, 목표 달성 시 네트워크를 통해 확장하기 위한 명확한 기준과 함께 직장 변화를 위한 강력한 전환 계획과 함께 추가 센터를 통해 단계적 출시를 약속합니다.

창고 운영의 주요 KPI는 처리량(단위/시간), 주문 처리 주기, 피킹/입고 정확도, 주문당 인건비, 초과 근무 발생률, 장비 가동 시간, 로봇당 유지 보수 비용, 공간 활용률을 포함하며, 교대조 및 센터별로 추적합니다.

비용 모델링은 Faulk 방법론을 사용하여 봇, 충전소, 소프트웨어 라이선스 및 시스템 통합에 대한 CapEx를 정량화합니다. OpEx는 유지 보수, 에너지, 클라우드 구독 및 지속적인 지원을 포함합니다. 노동 대체, 초과 근무 감소, 더 높은 피킹률 및 향상된 주문 처리 정확도에서 발생하는 컴퓨팅 절감액; 작업장 준비 상태를 반영하기 위해 교육 및 변경 관리 비용을 포함하고 기존 주문 처리 시스템과의 시스템 상호 의존성 및 통합 시기를 고려합니다.

ROI 시나리오는 세 가지 활용 경로를 가정합니다. 보수적: 장치당 CapEx ₩28,000, 센터당 40대, 총 CapEx ₩112만; OpEx 연간 ₩25만; 노동력 절감 연간 ₩50만; 투자 회수 기간 22~24개월; 3년 ROI 120~150%. 기본: CapEx ₩140만; OpEx 연간 ₩28만; 노동력 절감 연간 ₩75만; 투자 회수 기간 16~18개월; 3년 ROI 170~210%. 공격적: CapEx ₩175만; OpEx 연간 ₩34만; 노동력 절감 연간 ₩110만; 투자 회수 기간 11~13개월; 3년 ROI 230~310%.

운영상의 고려 사항으로는 경영진 후원과의 연계 보장, ERP 및 주문 처리 시스템과의 통합, 직장 내 혼란을 최소화하기 위한 교육 등이 있습니다. 안전 및 규정 준수를 유지하면서 센터를 통한 확장 계획을 수립하고, 주문 처리 프로세스에서 소매업체와 해당 제품에 맞춰 확장을 지원하는 로드맵을 준비합니다.

추가 센터를 통한 확장은 운영 유연성을 높이고 인력 증가 없이 처리량을 늘릴 수 있는 엄청난 기회를 제공합니다. 이러한 변화는 인력 운영자와 함께 더욱 강력한 주문 처리 능력을 제공하고 물량 증가에 따른 복원력을 높여 더욱 우수한 제품을 통해 소매업체를 위한 전반적인 가치 제안을 향상시킵니다.