€EUR

Blog
Farmaceutische namaakbestrijding - Serialisatie, Track-and-Trace technologieën en wereldwijde best practicesFarmaceutische anti-namaak – Serialisatie, track-and-trace technologieën en wereldwijde best practices">

Farmaceutische anti-namaak – Serialisatie, track-and-trace technologieën en wereldwijde best practices

Alexandra Blake
door 
Alexandra Blake
14 minutes read
Trends in logistiek
oktober 16, 2022

Regelgevende instanties heb verklaard dat een robust, end-to-end serialisatie- en track-and-trace systeem is critical om sterfgevallen terug te dringen en geneesmiddelen te beschermen gedurende de productie- en distributieketens. Ze verwachten real-time inzicht, onveranderlijke audit trails en interoperabele data die gezondheidsautoriteiten zonder vertraging kunnen beoordelen.

Implementeer serialisatie en tagging op elk niveau – vanaf private van productielijnen tot publieke distributie sites. Use optisch verificatie op het moment van afgifte en gelaagd folie verpakking om te knoeien met de folie te voorkomen. Samen zorgen deze maatregelen ervoor dat nagemaakte medicijnen onmogelijk onopgemerkt door de mazen van het net glippen. Correct geïmplementeerd kan deze aanpak het antwoord zijn op de vraag van namaakgeneesmiddelen met beton oplossingen. De data moet toegankelijk zijn via een vertrouwde site en beschermd met sterke toegangscontroles.

Globale best practices benadrukken geharmoniseerde serialisatiestandaarden, veilige gegevensuitwisseling, en regelmatige audits door derden. Ze staan op grensoverschrijdende interoperabiliteit, privacy-vriendelijk het delen van gegevens en programma's voor continue verbetering. Ze moedigen ook site-leverancier afstemming en toezicht op leveranciers om de bescherming te waarborgen en het risico dat namaakgeneesmiddelen patiënten bereiken te minimaliseren. Grensoverschrijdende interoperabiliteit en privacyvriendelijke gegevensuitwisseling als onderdeel van een uniforme aanpak zijn van grote waarde.

In de praktijk zouden toezichthouders en de industrie zich moeten afstemmen op tijdlijnen voor serialisatie, best practices moeten delen en moeten investeren in kosteneffectieve oplossingen zoals modulaire etikettering, optische zegels en veilige cloudgebaseerde registers. Ze moeten ook rekening houden met de capaciteit ter plaatse en de flexibiliteit van de productie om zich aan te passen aan changing vraag, terwijl de veiligheid van de patiënt centraal blijft staan en wordt voorkomen dat kleine producenten te zwaar worden belast. Na verloop van tijd verkleint deze aanpak het risico.

Praktische serialisatie en track-and-trace implementatie voor farmaceutische belanghebbenden

Opening met een onmiddellijk, gefaseerd serialisatieplan dat is afgestemd op de GS1-normen en dat kan worden opgeschaald van de fabrieksvloer tot het distributienetwerk. Vooruitgang in data capture een pilot in China mogelijk maken en uitbreiding naar andere markten naarmate de datakwaliteit zich bewijst. Serienummer valideren codes and streamlined procedures om geautoriseerde toegang en een veilige uitwisseling van productgegevens te waarborgen.

Implement a tweeledig model: serialisatie op plantniveau met een centrale datahub, en downstream verificatie op distributeur- en apotheekniveau. Gebruik gegevens om controles en afstemmingen aan te sturen en ervoor te zorgen dat alle producten een unieke code dat kan worden gescand door een smartphone bij ontvangstdocks en verkooppunten.

Define a datamodel die GTINs, serienummers, batchnummers, vervaldatum en fabricagedatum vastlegt. Stel standaardvelden vast en geautomatiseerde optische inspecties om ongeldige codes te detecteren of oppervlaktefraude op te sporen, met realtime meldingen voor bevoegd personeel.

Inschakelen Mobiele verificatie door medewerkers in de frontlinie en handelspartners om direct controles uit te voeren. Koppel de smartphoneverificatie workflow naar de centrale hub, zodat een scan binnen enkele seconden de status bevestigt. Dit helpt te voorkomen dat nagemaakte medicijnen in de toevoerketen terechtkomen en beschermt de winst.

Investeer in voortdurende training, kalibratie en periodieke inspecties van apparatuur. Gebruik dashboards om slagingspercentages, reconciliatietijd en foutenpercentages te monitoren. Bereid auditklare rapporten voor toezichthouders en geautoriseerde partners voor om naleving aan te tonen en voortdurende productieresiliëntie en respect voor de veiligheid van patiënten te ondersteunen.

Hoe robuuste serialisatiepijplijnen ontwerpen: unieke product-ID's, data-capture aan productielijnen en veilige dataopslag

Implementeer een legale, cryptografisch beveiligde unieke productidentificatie voor elke eenheid en verbind deze aan een onveranderlijke record in een beveiligde database. Deze slimme aanpak levert traceerbaarheid op unitniveau, van binnenkomende materialen tot patiëntgerichte verpakkingen, helpt bij het opsporen van inferieure behandelingen en ondersteunt wetshandhaving wanneer criminelen proberen controles te omzeilen.

Ontwerp dataverzameling aan de productielijn met gedefinieerde velden en verifieerbare tijdstempels: de UID gelezen, lot/batch, facility_id, line_id, event_type, en een privacy-bewarende operator_id. Registratie is zoveel mogelijk automatisch en vereist een klik om kwaliteitscontroles te bevestigen in plaats van handmatige invoer, waardoor menselijke fouten worden verminderd.

Sla data op in een gecentraliseerde database met append-only logs, encryptie in rust en tijdens transport, en strikte toegangscontroles. Gebruik een blokachtige keten van records om integriteit te waarborgen en auditing te vereenvoudigen. Onderhoud back-ups op afzonderlijke lokale en remote sites om bestand te zijn tegen uitval op siteniveau.

Definieer een minimaal datamodel met de velden: product_id, serienummer, batch, vervaldatum, facility_id, gebeurtenis, tijdstempel en status (bv. in, verpakking, verificatie). Gebruik een gedefinieerd schema om gedeeltelijke verificatie tussen websites en marktpartijen mogelijk te maken, met behoud van privacy.

Integreer verificatie aan de verpakkingslijn en on-pack verificatie voor distributeurs. Een 2D barcode of QR-code kan de UID bevatten en een verwijzing naar het database record; gebruikers kunnen klikken of scannen om te bevestigen dat wat ze ontvangen overeenkomt met wat het systeem opslaat, waardoor snel actie kan worden ondernomen als er een verschil optreedt.

Adopt a governance model that aligns with local regulations and major enforcement frameworks. Use a journal of events for traceability and a privacy-by-design approach that limits personal data and enables data minimization. Consider an ongoing risk review to address suspicion and adverse events.

Security and integrity require ongoing procedures: sign data at entry, rotate keys, implement PKI, and use hash chaining to prevent tampering. Set up alert rules for out-of-sequence events and create an incident workflow for criminal attempts to alter records. Use a standard database interface so marketing teams can access dashboards without exposing sensitive data.

Example: major drugmakers and several contract manufacturers integrate the above with a robust digital traceability platform. They publish guidelines on trusted websites and in a health journal to support industry-wide best practices and legal compliance. This approach makes the ecosystem robust to substandard treatments and helps frontline staff verify what they see at every step.

What to watch: define risk indicators, track incoming components from suppliers, and audit data monthly. Ask where bottlenecks occur and what data is truly needed to verify packaging, health outcomes, and patient safety. Technologies like secure data storage, hash chains, and secure data exchange help reduce privacy concerns while improving enforcement capabilities.

Procedures that scale include: standardized data dictionaries, defined event codes, regular training for operators, and clear escalation paths when anomalies arise. By treating serialization as a system, not a stand-alone feature, teams can protect patients, deter criminals, and maintain public trust.

Evaluating track-and-trace architectures: centralized databases vs distributed ledgers, data sharing, and system interoperability

Evaluating track-and-trace architectures: centralized databases vs distributed ledgers, data sharing, and system interoperability

Recommendation: implement a hybrid track-and-trace architecture that uses a central data store for master data and a permissioned distributed ledger to log serializations, transfers, and events across manufacturers, distributors, pharmacies, and medical facilities. Capture tmmda identifiers linked to genuine products and set up a process to update the ledger in real time, enabling quick checks and reducing counterfeit risk.

Central data stores speed checks and provide a stable reference for the entire network, while distributed ledgers offer an immutable audit trail for every transaction. Data sharing should occur through secure internet-enabled APIs with strict access controls, and data around privacy must be protected to support public trust and regulatory compliance. This combination makes it harder for criminals and sometimes illicit schemes to operate, while keeping operational complexity manageable.

Privacy by design is foundational: enforce role-based access, data minimization, and encryption at rest and in transit. Use q-ids to de-identify patient data while preserving provenance of goods; permissions govern who can see what, and rights holders (patients, providers, and regulators) are recognised and respected.

Interoperability relies on common standards: adopt GS1 (GTIN, GLN, EPCIS) and open APIs; define a shared data schema that includes serial numbers, batch, expiry, location, and tmmda. Ensure every partner can participate through consistent data models, enabling cross-border data sharing for what goods circulate and how they move through the internet ecosystem.

Governance and compliance require administrative bodies, clear data-sharing agreements, and well-defined penalties for offences. Align controls to counterfeit-proof objectives, avoid vendor lock-in, and prepare for changing regulatory requirements. Address inadequate controls and ensure the architecture remains resilient across diverse jurisdictions.

Implementation steps begin with mapping current activities and data flows, then selecting a baseline architecture that pairs a central registry with a permissioned ledger for critical nodes. Introduce q-ids, smart contracts to automate checks, and a phased pilot focused on high-risk medical goods. Track performance, user adoption, and traceability metrics to guide scale-up.

Key metrics include reduction in counterfeit incidents, shorter time to detect and respond to issues, and stable privacy and data integrity indicators. Monitor potential death risk implications from counterfeit medicines and adjust controls accordingly, ensuring every stakeholder–from manufacturers to healthcare providers–gains reliable visibility into provenance and compliance objectives.

Operationally, leverage innovative approaches to data stewardship that balance transparency with protection of rights around personal information. This architecture supports thorough checks, strengthens counterfeit-proof capabilities, and aligns with government and industry expectations while keeping goods moving safely around the supply chain.

Aligning global standards and regulatory requirements: GS1, ISO, and regional compliance timelines

Recommendation: initiate a coordination-driven, 24-month rollout to align GS1 serialization and ISO anti-counterfeiting guidance with regional timelines, focusing on medication with highest risk and using a central data model.

Key actions:

  • Adopt GS1 foundations: label every unit with a GS1 DataMatrix that encodes the GTIN, a unique serial number, batch/LOT, and expiry; apply an SSCC on the outer package; store all traceable data in a central repository to enable end-to-end trace across the supply chain using a unified data model; ensure the seal remains readable on the surface and can be verified at store or pharmacy level; incorporate codes that link each packaging level to its serial lineage.
  • Data governance and coordination: synchronize product data through the GS1 Global Data Synchronisation Network (GDSN); establish a central data hub and ensure those data streams are available to authorised partners from manufacturers to pharmacies; coordinate with regulators to publish a clear schedule and milestones, also sharing learnings from those pilots to drive continuous improvement.
  • ISO alignment and technological controls: apply ISO-inspired anti-counterfeiting guidelines, implement security features, and create auditable verification processes; leverage technological solutions such as cryptographic checks and secure digital records to help detect fake products and trace illicit activity over time; ensure human training complements automated controls and that those checks are integrated into daily workflows.
  • Regulatory mapping and phased regional rollout: map timelines by region (european union, north america, asia-pacific, latin america, and africa); plan a phased deployment to accommodate local inspections and regulatory expectations; build readiness for authorised distributors and pharmacies to participate in verification steps, preparing for cases where central repositories are queried during inspections.

Operational considerations:

  • Packaging and surface integrity: design packaging with tamper-evident seals and robust surface printing to survive store handling; validate that codes remain legible over shelf life in warm or humid environments; ensure surface coatings do not obscure data or hinder scanning by store personnel.
  • Pharmacy workflow and refusals: train pharmacists to scan, verify, and refuse to dispense medication if the code checks fail or distribution originates from untrusted sources; equip stores with real-time verification tools to support those decisions and to prevent illegal products from entering patient care paths.
  • Risk monitoring and case handling: monitor the black market for industrial-scale counterfeit networks; use trace data to identify hotspots and coordinate inspections and enforcement actions with regulators; prepare case files that document all steps from manufacture to patient and share findings here with relevant authorities to deter illicit activity.

Regional timelines (illustrative):

  1. european union: serialization and verification obligations exist for prescription medications; national repositories enable central trace queries; inspections assess compliance across manufacturers, distributors, and pharmacies; timelines were established under the FMD framework and related delegated regulations and have progressed across member states.
  2. north america: track-and-trace requirements emphasize unit-level identifiers and dispenser verification; phased implementation has been rolling out through regulatory guidance and enforcement programs; compliance remains a focus for manufacturers, wholesalers, and pharmacies, with ongoing updates to standards and data sharing.
  3. asia-pacific and other regions: pilots and national schemes are under way in several markets; timelines vary by country; coordination with regulators and regional bodies is advancing to align with global standards, with those efforts expanding as capacity grows.

Here, the aim is to create a cohesive, scalable model. Since fake medication exist across markets, this alignment helps reduce risk while supporting inspections and enforcement activities. Using a central, coordinated approach, those involved can store and verify codes across surfaces and seals, cooperate with european and other regulators, and trace products from authorised manufacturers to patients. Case studies explored in pilot programs show how a variety of packaging configurations can be managed with a single standard, and how a well-implemented surface seal and data-linked codes can deter illegal distribution. This coordination also supports pharmacies in refusing suspect products and in maintaining patient safety, while helping industry partners navigate the regulatory landscape with confidence.

Consumer and HCP verification tools at the point of sale: mobile apps, QR codes, and offline verification

Use a layered verification protocol at the point of sale that combines mobile apps, QR codes, and offline checks to stop counterfeit products from reaching consumers. This approach works across channels and with other packaging formats, where data integrity must be maintained; since connectivity can vary, the system should be able to operate offline and then reconcile later. The design should allow cooperation among manufacturers, distributors, retailers, and health professionals to keep data current and actionable. It should address the nature of the risk and prioritize user-friendly guidance for quick checks at the counter.

Mobile apps for consumers and HCPs should allow instant verification by scanning a QR code on the packaging. The scan reveals a genuine status, batch and expiry data, the site of manufacture, and a cryptographic fingerprint tied to a unique authenticity token. QR codes should be produced with robust printing and anti-tamper features, aligned with a clear policy for reporting suspicious cases. If the data confirms legitimacy, the app shows a green badge only for legitimate products. If not, it issues a clear warning and provides steps to contact the manufacturer or regulator. This protects health and reduces risk of death from counterfeit medicines.

Offline verification supports areas with difficult connectivity. Maintain a compact, device-local database of common product fingerprints and basic validation rules so validation is possible when online access is unavailable. The workflow should enable a quick check–often under two seconds–using printed features, micro-text, and serial ranges, with the option to flag anomalies for later review. When connectivity returns, reconcile offline results with the central data to tighten protection and preserve quality. Contain personal data and adhere to legal requirements while preserving the trust of consumers and clinicians.

Coordination with policy makers and a leading health journal helps disseminate best practices. Document the different approaches explored, including manufacturing-origin verification, printing innovations, and security features, to guide future technological advancements. In practice, this gives consumers and health professionals a straightforward, transparent path to confirm genuine products at the point of sale, strengthening protection against counterfeit challenges and reducing risk to patients.

Technologies to combat counterfeits along the supply chain: overt/covert markers, tamper-evident packaging, and anomaly detection

Technologies to combat counterfeits along the supply chain: overt/covert markers, tamper-evident packaging, and anomaly detection

Implement a layered system that combines overt markers, covert signals, tamper-evident packaging, and anomaly detection across the full supply chain to address counterfeits in drugs. This approach does reduce the circulation of counterfeit medicinal products, protecting patients and ensuring legitimate treatments reach the right hands. It supports both local markets and worlds markets, while respecting privacy and human-centered workflows throughout processes.

Overt markers keep verification fast at every handoff. Place visible features on packaging that consumers can scan, such as unique barcodes, holographic elements, or color-shift inks. These enable quick checks and disincentivize sale of counterfeits by genuine partners. Pair them with covert signals embedded in the product code (q-ids) that a distribution platform can verify during each transition. For most channels, these layers reduce the risk of cloned items entering the supply chain and help staff ensure legitimate products reach patients, whether in local stores or online orders.

Covert markers like quantum-dot elements or microscopic tags provide a hidden signal that survives changing packaging and multiple transfers. These markers are explored in several regional pilots and become stronger when combined with serialization and tamper-evident features. In Germany and other countries, these approaches were stronger when run alongside a robust track-and-trace platform and privacy controls.

Tamper-evident packaging creates a visible signal if the product is opened, helping users distinguish legitimate products. Use secure seals and blister packs with breakage indicators and smart labels that align with the level of risk in a given channel.

Anomaly detection and data integration monitor circulation patterns. During distribution, the system flags deviations in lot movements, timing, and q-id histories, with estimated returns on investment. The analysis informs recall actions and reduces exposure to counterfeit drugs while keeping privacy intact and human review when needed. The tmmda framework guides data-sharing protocols for privacy-preserving analytics.

Marker type What it adds Key benefits
Overt markers Visible packaging features + consumer-verifiable marks Fast verification, deters sale of counterfeit drugs, supports legitimate sale
Covert markers Hidden signals (e.g., q-ids, quantum-dot signals) Resilience to cloning, data-rich verification across transfers
Verzegeling tegen misbruik Zegels, onuitwisbare indicatoren, slimme labels Onmiddellijke waarschuwingen bij manipulatie, efficiëntie van terugroepacties
Anomaly detection Realtime-analyse, serialisatiegegevens, kruisverwijzingen Detecteert onregelmatige bewegingen, vermindert namaakrisico's, informeert privacybeschermende acties