Zapojte sa do novej platformy Siemens Additive Manufacturing Hub, ktorá spúšťa univerzálnu platformu určenú na zrýchlenie industrializácie. Hub plne integruje softvér, štandardy dát a výrobu, prinárajúc member spoločnosti a zákazníkov do jedného source of practical capabilities, with each poskytovateƅ prispievajú špecializovanými odbornými znalosťami.
Stránka goal zameriava sa na premenu pilotov na škálovateľné nasadenia, čo umožňuje tímom move rýchlo od konceptu po diely pripravené na výrobu. Hub spája AM machines a automatizácia, plus a machine-agnostická softvérová vrstva, s robots handling material transfer and post-processing while a shared source súdi pôvod, procesné parametre a výsledky kvality, ktoré robí umožňuje tímom ľahšie sa spájať cez funkcie. Neskor, platforma otvára prístup k ďalším modulom, ako sú katalógy dodávateľov a partnerské služby.
For member výrobcovia, centrum ponúka jasné kroky na realizáciu hodnôt: definujte konkrétnu goal, map your potrebuje do modulov platformy a zriadiť partnerships with Siemens as a trusted poskytovateƅ. Začnite s need for a baseline data source a postupne sa rozširovať k digitálnym dvojníkom od konca do konca. Tento prístup znižuje riziko, skracuje čas uvedenia do výroby viac ako predtým a vytvára organickú cestu k nasadeniu v plnom rozsahu.
Ako priemyselné odvetvia prijímajú hub, podniky získavajú rýchlejšiu integráciu s dodávateľskými reťazcami, a univerzálny model dát, a posun smerom k plne digitalizovanému získavaniu. The platform poskytuje konzistentné API rozhranie a dátový schém, čo umožňuje externé partnerships predĺžiť možnosti neskôr bez narušenia súčasných pracovných postupov. Pre tímy hľadajúce rýchlosť, modulárna konštrukcia pomáha urýchliť spoluprácu cez funkcie a dodávateľov.
Aby ste maximalizovali hodnotu, priradte harmonogram projektu k tromi milníkom: implementujte základné údaje source, otestujte vytlačenú časť v pracovných postupoch centra a v nasledujúcom štvrťroku zväčšte výrobu do vysokej produkcie. Zapojte sa skoro s tímmi účtov Siemens, aby ste zladili vaše machine zlepšiť možnosti využitia ponuky centra a zabezpečiť cielené školenia pre váš personál. Výsledkom je posun k plne digitálnym operáciám, ktoré sú organické a škálovateľné v rámci prevádzok.
Rozsah a praktický dopad Siemens AM hubu
Spustite Siemens AM hub ako centrálnu platformu na zrýchlenie adopcie v oblasti dizajnu, výroby a metrológie. Integrovaný do existujúcich pracovných postupov, hub prepojuje návrh pre AM, riadenie procesov, analýzu dát a služby prostredníctvom partnerskej siete, aby poskytoval rýchlejšie a lepšie výsledky. Aprílové míľniky demonštrujú hodnotu pre mnoho obchodných jednotiek a nastavujú jasné tempo pre širšie nasadenie.
Rozsah zahŕňa kompletnú súpravu služieb: digitálne dvojča pre kvalifikáciu dielov, monitorovanie výrobných procesov, zabezpečenie kvality riadené metrológiou a koordináciu dodávateľov. Poskytovateľ koordinuje s internými tímami a členskými spoločnosťami, aby znížil prenosy a zlepšil efektívnosť životnosti a kontrolu životného cyklu. Hub rieši výzvy, ako sú datové ostrovy, variabilita procesov a pohotovosť pre certifikáciu. Analýzy a priebežné testovanie ukazujú skoré zlepšenia v mierach prepracúvania a časoch tlače. Vedúci pracovníci z výroby, obstarávania a výskumu a vývoja budú spolupracovať na riadiacom fóre, aby položili otázky týkajúce sa vlastníctva údajov, predpokladov a rizika, čím zabezpečí zladenie s kontrolou rizika.
Praktický dopad zahŕňa rýchlejšie cykly návrhu až po tlač, vyšší výťažok pri prvom prechode a lepšiu kontrolu nad spotrebou materiálov. Mätrologicky podložená spätná väzba uzatvára priepasť medzi návrhom a výrobou, čím znižuje odpad a prestavbu a zároveň rozširuje kapacitu. Spoločné štandardy a jednotný dátový model umožňujú mnohým partnerským lokalitám fungovať so spoločnou sieťou dodávateľov, čím uvoľňujú hodnotu v rýchlom tempe. Toto nastavenie podporuje jasné signály ROI a rieši medzery v oblasti nákladov, dodacej lehoty a kvality prostredníctvom neustálej analýzy a zameraných služieb.
Cieľové odvetvia a vysoko hodnotné aplikačné prípady pre centrum

Začnite návštevou miesta, aby ste zmapovali cenné prípady použitia v kľúčových odvetviach: letectvo, automobilový priemysel, priemyselné stroje, zdravotnícke prístroje a energetické služby. Táto zameraná iniciatíva sa prekladá do postaveného portfólia, ktoré môžu inžinieri testovať a škálovať, riešiť celé fázy od návrhu po hotové diely.
V aerospaciote prioritizujte vytlačené štrukturálne komponenty a nástroje, ktoré znižujú hmotnosť pri zachovaní pevnosti. Cieľové konzoly, kryty a trasy chladiacich kanálov validované existujúcimi štandardmi; spárujte ich s optimized post-processing a dimenzionálna kontrola na splnenie certifikácia kritériá
V automobilovom a mobilnom priemysle vyvíjať. vytlačené prvítka a diely pre končcnš vzorkovanínia a obmedzené rozsahu produkcie. Zameračte sa na jigs, svorky, puzdrá senzorov a konzoly, ktoré skracujú cykly a zlepšujú earnings potenciál. A intelligent workflow analyzuje výkon a umožňuje inžinierom optimize geometria pre tuhosť, odolnosť proti vibráciám a bezpečnosť.
In healthcare, address precision devices, surgical guides, and patient-specific trays where fit and biocompatibility matter. Use materials available for medical use and robust documentation trails to support customer needs and certifikácia tests. The hub will coordinate co-design with clinicians to ensure the required dimensions and tolerances.
In energy and utilities, produce spare parts and specialized tools for remote operations. Printed parts enable on-site availability, serialized to support traceability, and stored in a centralized catalog to reduce downtime. This approach improves účinnosť and lowers maintenance costs, driving earnings uplift over time.
Across all sectors, implement an optimization loop: design, print, inspect, certify, and ship. A clear certifikácia pathway, with industry-specified tests, ensures reliability. Leaders from engineering, procurement, and operations collaborate to address customer requirements, with results shared in a regular newsletter a more opportunities available to partners. By tracking analysis a dimensions, the hub turns this initiative into a scalable capability that engineers can visit again, while organic material options and intelligent data analytics expand the range of use cases and available parts.
Capabilities showcased: additive tooling, automation, and digital twin integration
Begin with a fully integrated cell that links additive tooling, automated handling, and a digital twin to drive serialized tooling, faster assembly, and better analysis across the enterprise.
From a maritime perspective, the hub demonstrates how on-demand tooling accelerates component fabrication for hull blocks, propeller fixtures, and marine equipment while maintaining traceability and quality across days of production.
- Additive tooling: precision fixtures, jigs, and inserts produced with optimized geometries; serialized tooling data travels with each part, enabling end-to-end traceability; supports assembly on tight tolerances; reduces fixture lead times and enables on-site configuration in shipyards and offshore platforms.
- Automation integration: collaborative automation (cobots, vision-guided grippers, and automated handling) streamlines material flow and reduces manual intervention; together with AI-based scheduling, boosts throughput and reduces cycle time by 20–40% in typical lines; supports multi-site manufacturing, reinforcing internationality of supplier networks and customers.
- Digital twin integration: live data from printers, sensors, and inspection systems feeds a digital twin that simulates print sequences and assembly steps; analysis informs parameter optimization, print orientation, and material selection; enables predictive maintenance, reduces unplanned downtime by up to 30%, and shortens testing cycles.
- Quality and testing: integrated testing protocols validate serialized parts at every stage; automated inspection captures dimensional data and feeds the digital twin for continuous improvement; executives can see real-time quality dashboards and traceability records across days of production.
- Partner ecosystem and financing: a collaborative network with industrys leaders and partner suppliers offers financing options for mid-market and enterprise customers; aligns with well-planned executive roadmaps to optimize capital expenditure and time-to-value; expands tools repertoire and accelerates what customers can make, from standard parts to complex assemblies.
This opens new opportunities for enterprise-scale manufacturers to optimize performance, reduce waste, and deliver serialized parts to customers faster, and more, while maintaining internationality and collaborative culture.
Strategies for extending die casting tool life: process control and material selection
Adopt closed-loop process control with real-time sensing of temperature, pressure, and shot velocity, paired with a tightly defined material pedigree for low variability. This approach will reduce thermal hotspots, minimize wear, and extend tool life without sacrificing cycle time on typical high-precision parts. Use topology-informed cooling channels to move heat efficiently along critical surfaces and maintain an environment where repeatable results are possible across shifts and machines. Begin testing in a controlled pilot to verify wear reduction and establish a robust process window.
In-process control details drive reliability. Install inline sensors on the die and platen to capture temperature, surface wear, and lubrication flow, then feed data into SPC workflows for immediate alerts. Streamlines of data transfer to Teamcenter enable traceability from tool setup to production outcomes, supporting certifications and future adoption at scale. Regular testing validates that parameter drift stays within defined limits, and the team can move from pilot to production with confidence as tooling wear signals stabilize.
Material selection affects tool life as much as process control. Favor alloys with stable chemistries and low susceptibility to sticking or transfer to tool surfaces, supplemented by newly developed coatings and lubricants designed for high-precision cycles. Use lubricants and release agents compatible with the chosen alloy to minimize build-up and surface damage. For medical and other demanding applications, restrict material batches to those with certified chemistry and documented reliability, then verify performance during transfer to new production lines. Plan material adoption with a clear set of questions for suppliers and QA to avoid surprises in head geometry or gate design that could impair reliability.
Implementation path aligns teams and standards. Initiate a point-focused pilot on a limited line, capture tool life metrics, and compare against baseline traditional approaches. Link tool-life data to Teamcenter records to support repeatability, traceability, and international certification audits. Prepare the environment for broader adoption by aligning with training, procurement, and maintenance teams, and set governance to manage newly integrated data and tool-replacement cycles.
| Parameter | Current Approach | Recommended Change | Očakávaný prínos |
|---|---|---|---|
| Cooling Channel Topology | Straight channels with generic flow | Topology-optimized, multi-path cooling with staggered loops | 10–28% longer tool life; more uniform die temps |
| Process Feedback | Periodic checks and post-run inspection | Inline sensing and SPC-driven adjustments | Faster wear detection; reduced variance |
| Material Batch Control | Lot-to-lot variation possible | Certified chemistries; tighter supplier specs | Fewer inclusions; cleaner surfaces |
| Lubrication Strategy | Uniform application with fixed intervals | Real-time flow control and compatibility checks | Less buildup; improved surface finish |
| Tooling Data Management | Manual records; sporadic history | Teamcenter-driven asset history and condition monitoring | More reliable planning and certification readiness |
| Operator Training | Standard SOPs; periodic refresh | Structured sessions tied to material and topology choices | Faster adoption, fewer human errors, better transferability |
Data and analytics: capturing performance signals and predictive maintenance
Implement a centralized data fabric that ingests real-time signals from printers, sensors, and post-processing stages, and ties them to serialized parts in the assembly line. This move enables predictive maintenance and optimizes the additive initiative across sites.
To accelerate value, deploy a fully connected data network that links machines, tools, and QA outcomes with the customer and supply chain systems. Also bring a worldwide perspective by standardizing data models and dashboards that provide a single solution across locations where printed parts are produced and assembled.
- Data model and tagging: design a data model that is designed to capture printer telemetry (temperature, nozzle health, vibration), in-situ metrology, and QA outcomes for each serialized part. Place serialized identifiers on every part so data moves with the part through assembly and post-processing, enabling end-to-end traceability over the entire lifecycle.
- Data pipeline and network: establish edge-to-cloud pipelines and a robust network that collects signals from printed parts across the worldwide hub network. In place, deploy streaming (and batch) processes that feed a central data lake, with clear data lineage and access controls to protect intellectual property.
- Analytics and predictors: apply advanced analytics to detect anomalies and forecast maintenance windows. Use time-series models to estimate nozzle wear, filament consumption, and build stage energy usage, enabling maintenance over planned downtime rather than reactive breaks. Integrate QA feedback from Instron testing rigs to refine failure likelihood and yield predictions for each build.
- Governance and security: enforce data quality checks, lineage, and role-based access across all additive systems. Also document data provenance for each part and each build, ensuring trust across distributed teams and suppliers involved in the initiative.
- Operational decision-making: build dashboards that show system health, yield, and predicted failure points for operators and managers. This customer-focused solution helps bring value everywhere, enabling teams to respond quickly while maintaining high safety and process controls.
Implementation metrics and targets: aim for a 15–25% reduction in unplanned downtime within the first 12 months, a 5–12% increase in first-pass yield, and a 10–20% cut in scrap across multiple sites. Track serialized part visibility across the network and report weekly on maintenance windows, mean time to repair, and parts availability to sustain a reliable additive manufacturing workflow.
With these steps, the initiative gains cutting-edge advances, establishing a global standard for data-driven maintenance. We believe this solution will move the industry forward, with that designed to be fully scalable and ready for future integrations across all systems, everywhere, while maintaining consistent performance for every printed part and assembly.
Actionable implementation roadmap with milestones and ROI indicators
Launch a 90-day pilot on only two medical components designed for printed production to quantify value, reduce cost per part by 22–28%, and prove a scalable workflow that can be delivered everywhere across centers.
Days 0–30: form three cross-functional groups–engineering, manufacturing, and quality–to lock the base design, complete the BOM, and finalize the print process. Define the certification path, including material approvals and process validation. Select a machine mix capable of delivering over 1,000 printed units per week with tight tolerances. Establish a control plan to track days to deliver, lead times, scrap rate, and inspection pass rate, and align it with the center’s governance.
Days 31–60: create and test prototypes, capture performance data, and fine-tune print parameters for greater precision. Confirm financing arrangements for initial capex–aim for a balanced mix between leasing and internal funds. Run interim qualification tests to satisfy certification criteria and document results for the center’s audit.
Days 61–120: move to limited production of qualifying parts, monitor throughput, machine uptime, and scrap trends; adjust processes to realize at least a 15% reduction in cost per part and a 30% faster delivery cycle. Document earnings impact from reduced labor and faster time-to-market to create a stronger perspective on value. Prepare for broader expansion by validating repeatability across batches.
Days 121–180: expands to additional sites and ensures the same certification framework across the network; moves from pilot to full-scale production with printed parts deployed everywhere; creates a standardized quarterly newsletter to share outcomes and best practices while securing long-term financing to accelerate growth.
ROI indicators to monitor monthly include payback period in days, cumulative earnings uplift, and ROI percentage; track cost per part, lead-time reductions, and part performance over the first 6–12 months. A greater earnings multiple and a clearer perspective on risk enable financing to move faster; if payback stays under 180 days and the net earnings lift surpasses 12%, scale to additional components and sites. Use the newsletter to report quarterly results and align with groups and center management.
Siemens Opens New Additive Manufacturing Hub to Accelerate Industrial Digitalization">